Membrane recruitment of endogenous LRRK2 precedes its potent regulation of autophagy.
نویسندگان
چکیده
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial and idiopathic Parkinson's disease. However, the mechanisms for activating its physiological function are not known, hindering identification of the biological role of endogenous LRRK2. The recent discovery that LRRK2 is highly expressed in cells of the innate immune system and genetic association is a risk factor for autoimmune disorders implies an important role for LRRK2 in pathology outside of the central nervous system. Thus, an examination of endogenous LRRK2 in immune cells could provide insight into the protein's function. Here, we establish that stimulation of specific Toll-like receptors results in a complex biochemical activation of endogenous LRRK2, with early phosphorylation of LRRK2 preceding its dimerization and membrane translocation. Membrane-associated LRRK2 co-localized to autophagosome membranes following either TLR4 stimulation or mTOR inhibition with rapamycin. Silencing of endogenous LRRK2 expression resulted in deficits in the induction of autophagy and clearance of a well-described macroautophagy substrate, demonstrating the critical role of endogenous LRRK2 in regulating autophagy. Inhibition of LRRK2 kinase activity also reduced autophagic degradation and suggested the importance of the kinase domain in the regulation of autophagy. Our results demonstrate a well-orchestrated series of biochemical events involved in the activation of LRRK2 important to its physiological function. With similarities observed across multiple cell types and stimuli, these findings are likely relevant in all cell types that natively express endogenous LRRK2, and provide insights into LRRK2 function and its role in human disease.
منابع مشابه
Knockdown of mitofilin inhibits autophagy and facilitates starvation-induced apoptosis in HeLa cells
Objective(s): Mitofilin contributes to the maintenance of mitochondrial structure and functions. This study was undertaken to determine the mechanisms underlying its regulation of apoptosis. Materials and Methods: Mitofilin was knockdowned by specific short hairpin RNA (shRNA) and the stable HeLa cell clone was selected. The autophagy a...
متن کاملA link between LRRK2, autophagy and NAADP-mediated endolysosomal calcium signalling.
Mutations in LRRK2 (leucine-rich repeat kinase 2) represent a significant component of both sporadic and familial PD (Parkinson's disease). Pathogenic mutations cluster in the enzymatic domains of LRRK2, and kinase activity seems to correlate with cytotoxicity, suggesting the possibility of kinase-based therapeutic strategies for LRRK2-associated PD. Apart from cytotoxicity, changes in autophag...
متن کاملInterplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy
Objective(s): The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...
متن کاملRegulation of the autophagy protein LC3 by phosphorylation
Macroautophagy is a major catabolic pathway that impacts cell survival, differentiation, tumorigenesis, and neurodegeneration. Although bulk degradation sustains carbon sources during starvation, autophagy contributes to shrinkage of differentiated neuronal processes. Identification of autophagy-related genes has spurred rapid advances in understanding the recruitment of microtubule-associated ...
متن کاملDiversity in the Regulation of Autophagy and Mitophagy: Lessons from Parkinson's Disease
Selective mitochondrial degradation through autophagy (mitophagy) has emerged as an important homeostatic mechanism in a variety of organisms and contexts. Complete clearance of mitochondria can be observed during normal maturation of certain mammalian cell types, and during certain forms of neuronal cell death. In recent years, autophagy dysregulation has been implicated in toxin-injured dopam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 23 16 شماره
صفحات -
تاریخ انتشار 2014